Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 232: 102560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097036

RESUMO

Damaged or dysfunctional neural circuits can be replaced after a lesion by axon sprouting and collateral growth from undamaged neurons. Unfortunately, these new connections are often disorganized and rarely produce clinical improvement. Here we investigate how to promote post-lesion axonal collateral growth, while retaining correct cellular targeting. In the mouse olivocerebellar path, brain-derived neurotrophic factor (BDNF) induces correctly-targeted post-lesion cerebellar reinnervation by remaining intact inferior olivary axons (climbing fibers). In this study we identified cellular processes through which BDNF induces this repair. BDNF injection into the denervated cerebellum upregulates the transcription factor Pax3 in inferior olivary neurons and induces rapid climbing fiber sprouting. Pax3 in turn increases polysialic acid-neural cell adhesion molecule (PSA-NCAM) in the sprouting climbing fiber path, facilitating collateral outgrowth and pathfinding to reinnervate the correct targets, cerebellar Purkinje cells. BDNF-induced reinnervation can be reproduced by olivary Pax3 overexpression, and abolished by olivary Pax3 knockdown, suggesting that Pax3 promotes axon growth and guidance through upregulating PSA-NCAM, probably on the axon's growth cone. These data indicate that restricting growth-promotion to potential reinnervating afferent neurons, as opposed to stimulating the whole circuit or the injury site, allows axon growth and appropriate guidance, thus accurately rebuilding a neural circuit.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Moléculas de Adesão de Célula Nervosa , Animais , Camundongos , Axônios/fisiologia , Cerebelo
2.
RNA Biol ; 18(12): 2278-2289, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33685366

RESUMO

Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusBMCap), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusBMCap modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.


Assuntos
Oxirredutases/metabolismo , RNA de Transferência/química , Tenericutes/genética , Uridina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Escherichia coli/genética , Evolução Molecular , Modelos Moleculares , Conformação de Ácido Nucleico , Oxirredutases/genética , RNA Bacteriano/química , Especificidade por Substrato , Tenericutes/metabolismo
3.
Biomolecules ; 10(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290235

RESUMO

The C5-methylation of uracil to form 5-methyluracil (m5U) is a ubiquitous base modification of nucleic acids. Four enzyme families have converged to catalyze this methylation using different chemical solutions. Here, we investigate the evolution of 5-methyluracil synthase families in Mollicutes, a class of bacteria that has undergone extensive genome erosion. Many mollicutes have lost some of the m5U methyltransferases present in their common ancestor. Cases of duplication and subsequent shift of function are also described. For example, most members of the Spiroplasma subgroup use the ancestral tetrahydrofolate-dependent TrmFO enzyme to catalyze the formation of m5U54 in tRNA, while a TrmFO paralog (termed RlmFO) is responsible for m5U1939 formation in 23S rRNA. RlmFO has replaced the S-adenosyl-L-methionine (SAM)-enzyme RlmD that adds the same modification in the ancestor and which is still present in mollicutes from the Hominis subgroup. Another paralog of this family, the TrmFO-like protein, has a yet unidentified function that differs from the TrmFO and RlmFO homologs. Despite having evolved towards minimal genomes, the mollicutes possess a repertoire of m5U-modifying enzymes that is highly dynamic and has undergone horizontal transfer.


Assuntos
Evolução Molecular , Ácidos Nucleicos/metabolismo , Tenericutes/metabolismo , Uracila/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Dinitrocresóis/metabolismo , Ácido Fólico/metabolismo , Metilação , Metiltransferases/metabolismo , Modelos Moleculares , RNA Ribossômico 23S/metabolismo , RNA de Transferência/metabolismo , Tenericutes/genética
4.
Nucleic Acids Res ; 48(4): 2050-2072, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31943105

RESUMO

2'-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1. Genetic knockout studies together with MALDI-TOF mass spectrometry and RiboMethSeq mapping revealed that CG7009 is responsible for methylating the wobble position in tRNAPhe, tRNATrp and tRNALeu, while CG5220 methylates position C32 in the same tRNAs and also targets additional tRNAs. CG7009 or CG5220 mutant animals were viable and fertile but exhibited various phenotypes such as lifespan reduction, small RNA pathways dysfunction and increased sensitivity to RNA virus infections. Our results provide the first detailed characterization of two TRM7 family members in Drosophila and uncover a molecular link between enzymes catalyzing Nm at specific tRNAs and small RNA-induced gene silencing pathways.


Assuntos
Drosophila melanogaster/genética , Inativação Gênica , RNA de Transferência/genética , tRNA Metiltransferases/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Metilação , Metiltransferases/genética , Proteínas Nucleares/genética , Interferência de RNA , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Front Neural Circuits ; 10: 85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27857683

RESUMO

Non-invasive brain stimulation (NIBS) by electromagnetic fields appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although, in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits) so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined. Here, we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS) delivered at three frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modeling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency, which we have previously shown induces neural circuit reorganization. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-min stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially modified according to the stimulation delivered. Thus we describe a simple magnetic stimulation device that delivers defined stimulation parameters to different neural systems in vitro. Such devices are essential to further understanding of the fundamental effects of magnetic stimulation on biological tissue and optimize therapeutic application of human NIBS.


Assuntos
Campos Eletromagnéticos , Desenho de Equipamento , Estimulação Física/métodos , Rombencéfalo/fisiologia , Estimulação Magnética Transcraniana/métodos , Animais , Técnicas In Vitro , Estimulação Física/instrumentação , Estimulação Magnética Transcraniana/instrumentação
6.
J Neuropathol Exp Neurol ; 66(6): 481-90, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17549008

RESUMO

Neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and subgranular zone (SGZ) and increases in the adult after brain injury. In this study, postnatal day 7 rats underwent middle cerebral artery electrocoagulation and transient homolateral common carotid artery occlusion, a lesioning protocol that resulted in ipsilateral (IL) forebrain ischemic injury, leading to a cortical cavity 3 weeks later. The effects of neonatal ischemia on hemispheric damage, cell death, cell proliferation, and neurogenesis were examined 4 hours to 6 weeks later by the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and immunohistochemistry of Ki-67 in proliferating cells and of doublecortin, a microtubule-associated protein expressed only by immature neurons. Neonatal ischemic injury resulted in persistent reduced IL and transient reduced contralateral (CL) hemispheric areas, a consequence of sustained and transient cell death in the IL and CL areas, respectively. Ki-67 immunostaining revealed 3 peaks of newly generated cells in the dorsal SVZ and SGZ in the IL side and also in the CL side at 48 hours and 7 and 28 days after ischemia. Double immunofluorescence revealed that most of the Ki-67-positive cells were astrocytes at 48 hours. Ischemic injury also stimulated SVZ neurogenesis, based on increased doublecortin immunostaining in both SVZs at 7 to 14 days after injury. Doublecortin-positive neurons remained visible around the lesion at 21 days but displayed an immature shape in discrete chains or clusters. Although unilateral ischemic damage was produced, results indicate successful regenerative changes in the CL hemisphere, allowing anatomical recovery.


Assuntos
Animais Recém-Nascidos , Isquemia Encefálica/patologia , Encéfalo/patologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Morte Celular , Proliferação de Células , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Imunofluorescência , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Regeneração Nervosa , Neurônios/patologia , Neuropeptídeos/metabolismo , Oligodendroglia/patologia , Ratos , Fatores de Tempo
8.
J Neurochem ; 100(4): 1062-71, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17166174

RESUMO

Hypoxia-ischaemia in the developing brain results in brain injury with prominent features of apoptosis. In the present study, a third generation dipeptidyl broad-spectrum caspase inhibitor, quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh), was tested in a model of unilateral focal ischaemia with reperfusion in 7-day-old rats. Q-VD-OPh (1 mg/kg, i.p.) reduced cell death, resulting in significant neuroprotection at 48 h of recovery (infarct volume of 12.6 +/- 2.8 vs. 24.3 +/- 2.2%, p = 0.006). The neuroprotective effects observed at 48 h post-ischaemia hold up at 21 days of survival time and attenuate neurological dysfunction. Analysis by gender revealed that females were strongly protected (6.7 +/- 3.3%, p = 0.006), in contrast to males in which there was no significant effect, when Q-VD-OPh was given after clip removal on the left common carotid artery. Immunoblot analysis demonstrated that Q-VD-OPh inhibits caspase 3 cleavage into its p17 active form and caspase 1 up-regulation and cleavage in vivo. Following ischaemia in P7 rats, males and females displayed different time course and pattern of cytochrome c release and active p17 caspase 3 during the first 24 h of recovery. In contrast, no significant difference was observed for caspase 1 expression between genders. These results indicate that ischaemia activates caspases shortly after reperfusion and that the sex of the animal may strongly influences apoptotic pathways in the pathogenesis of neonatal brain injury. The specificity, effectiveness, and reduced toxicity of Q-VD-OPh may determine the potential use of peptide-derived irreversible caspase inhibitors as promising therapeutics.


Assuntos
Clorometilcetonas de Aminoácidos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Identidade de Gênero , Quinolinas/uso terapêutico , Acidente Vascular Cerebral/prevenção & controle , Animais , Animais Recém-Nascidos , Inibidores de Caspase , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Exame Neurológico/métodos , Ratos , Estatísticas não Paramétricas , Acidente Vascular Cerebral/patologia
9.
J Infect Dis ; 194(11): 1481-91, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17083032

RESUMO

BACKGROUND: Tenofovir disoproxil fumarate (TDF) may induce renal proximal tubulopathy (rPT). There are no data on pharmacogenomic predictors of rPT in the genes encoding the multidrug-resistance protein (MRP) 2 and MRP4 transporters. METHODS: Mutational screening of the genes for MRP2 (ABCC2) and MRP4 (ABCC4) was performed using genomic DNA from 13 human immunodeficiency virus type 1 (HIV-1)-infected patients (group 1) presenting with TDF-induced rPT. Concomitantly, 17 unrelated HIV-1-infected patients who had received TDF therapy and who did not have rPT (group 2) were included in a case-control analysis, to assess the influence of single-nucleotide polymorphisms (SNPs) identified in ABCC2 and ABCC4. RESULTS: Six SNPs were identified in ABCC2. A significant allelic association between the 1249 G-->A SNP and TDF-induced rPT was observed (odds ratio, 6.11 [95% confidence interval, 1.19-31.15]; P<.02). ABCC2 haplotypes were significantly associated with the onset of TDF-induced rPT--CATC appeared to be a predisposing haplotype, as it was found in 40.9% of the group 1 case patients and in 13.7% of the group 2 control subjects (P<.01), whereas CGAC appeared to be a protective haplotype, as it was not observed in the group 1 case patients but was present in 20.2% of the group 2 control subjects (P<.01). No association was observed between ABCC4 polymorphism and TDF-induced rPT in the present study. CONCLUSION: ABCC2 haplotypes are associated with rPT induced by TDF in HIV-1-infected patients.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/efeitos adversos , Síndrome de Fanconi/induzido quimicamente , Síndrome de Fanconi/genética , Infecções por HIV/tratamento farmacológico , Haplótipos , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Organofosfonatos/efeitos adversos , Adenina/efeitos adversos , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Infecções por HIV/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Estatística como Assunto , Tenofovir
10.
Blood ; 108(7): 2244-7, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16772608

RESUMO

The capacity of clopidogrel to inhibit ADP-induced platelet aggregation shows wide intersubject variability. To determine whether frequent functional variants of genes coding for candidate cytochrome P450 (CYP) isoenzymes involved in clopidogrel metabolic activation (CYP2C19*2, CYP2B6*5, CYP1A2*1F, and CYP3A5*3 variants) influence the platelet responsiveness to clopidogrel, we conducted a prospective pharmacogenetic study in 28 healthy white male volunteers treated for 7 days with clopidogrel 75 mg/d. We observed that pharmacodynamic response to clopidogrel was significantly associated with the CYP2C19 genotype. Twenty of the subjects were wild-type CYP2C19 (*1/*1) homozygotes, while the other 8 subjects were heterozygous for the loss-of-function polymorphism CYP2C19*2 (*1/*2). Baseline platelet activity was not influenced by the CYP2C19 genotype. In contrast, platelet aggregation in the presence of 10 muM ADP decreased gradually during treatment with clopidogrel 75 mg once daily in *1/*1 subjects, reaching 48.9% +/- 14.9% on day 7 (P < .001 vs baseline), whereas it did not change in *1/*2 subjects (71.8% +/- 14.6% on day 7, P = .22 vs baseline, and P < .003 vs *1/*1 subjects). Similar results were found with VASP phosphorylation. The CYP2C19*2 loss-of-function allele is associated with a marked decrease in platelet responsiveness to clopidogrel in young healthy male volunteers and may therefore be an important genetic contributor to clopidogrel resistance in the clinical setting.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/fisiologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/fisiologia , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo Genético , Ticlopidina/análogos & derivados , Adolescente , Adulto , Alelos , Clopidogrel , Citocromo P-450 CYP2C19 , Genótipo , Homozigoto , Humanos , Masculino , Farmacogenética , Agregação Plaquetária/efeitos dos fármacos , Testes de Função Plaquetária , Ticlopidina/farmacologia
11.
J Biol Chem ; 278(47): 47046-52, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12970345

RESUMO

The SAP97 isoforms differ by alternatively spliced insertion domains that regulate protein localization and oligomerization. We used reverse transcription-PCR to identify SAP97 isoforms of human and rat myocardium. In Chinese hamster ovary cells, cloned protein expression was studied using Western blot, confocal imaging of green fluorescent protein-tagged proteins, and patch clamp technique. The two main cardiac SAP97 isoforms contained both I3 and I1B inserts and differed by the I1A insert. Both isoforms co-precipitated with hKv1.5 channels. Only the isoform lacking I1A increased the current (by 215 +/- 22%), whatever the level of channel expression. To examine the involvement of the proline-rich I1A insert in the effect of SAP97, a W623F mutation in the Src homology 3 domain was created, and that restored the effect of the SAP97 on current. SAP97 isoform containing an I1A and I2 domain instead of the I3 domain stimulated the current, whereas SAP97 after deletion of the Src homology 3 and guanylate kinase-like domains did not. In cells co-expressing I3(+I1A) or I3(-I1A), green fluorescent protein-tagged Kv1.5 channels were organized in plaque-like structures at the plasma membrane level, whereas intracellular aggregates of channels predominated with the I2 isoform. The two cardiac SAP97 isoforms have different effects on the hKv1.5 current, depending on their capacity to form channel clusters.


Assuntos
Miocárdio/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Isoformas de Proteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Clonagem Molecular , Proteína 1 Homóloga a Discs-Large , Eletrofisiologia , Átrios do Coração/química , Humanos , Canal de Potássio Kv1.5 , Proteínas de Membrana , Miocárdio/química , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/biossíntese , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Ligação Proteica , Isoformas de Proteínas/análise , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Transfecção
12.
Cardiovasc Res ; 56(3): 433-42, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12445884

RESUMO

OBJECTIVE: In various cell types, membrane-associated guanylate kinases proteins called MAGUK play a major role in the spatial localization and clustering of ion channels. Here, we studied the expression and role of these anchoring proteins in human right atrial myocardium by means of various molecular, biochemical and physiological methods. METHODS AND RESULTS: SAP-97, PSD-95, Chapsyn and SAP-102 messengers were detected by reverse transcriptase-polymerase chain reaction (RT-PCR) on mRNA extracted from both whole myocardium and isolated myocytes. Western blot revealed that the MAGUK protein SAP-97 and, to a lesser extent, PSD-95, is abundantly expressed in human atrial myocardium, while Chapsyn are almost undetectable. Confocal microscopic visualization of cryosection of atrial myocardium stained with the anti-PSD-95 family antibody showed positive staining at the plasma membrane level and cell extremity. Calpain-I cleaved both SAP-97 and PSD-95 proteins, resulting in an accumulation of short bands, including an 80-kDa band that was also detected in the cytosolic protein fraction. Immunoprecipitation of SAP-97 co-precipitated hKv1.5 channels, and vice versa. Co-expression of cloned SAP-97 and hKv1.5 channels in Chinese hamster ovarian (CHO) cells increased the K(+) current (157.00+/-19.45 pA/pF vs. 344.50+/-58.58 pA/pF at +50 mV). CONCLUSIONS: The protein SAP-97 is abundantly expressed in human atrial myocardium in association with hKv1.5 channels, and probably contributes to regulating the functional expression of the latter.


Assuntos
Miocárdio/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células CHO , Calpaína/farmacologia , Cricetinae , Proteína 1 Homóloga a Discs-Large , Regulação da Expressão Gênica , Guanilato Quinases , Átrios do Coração/metabolismo , Humanos , Canal de Potássio Kv1.5 , Proteínas de Membrana , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...